
Environmental Processing of Lipids Driven by Aqueous
Photochemistry of α‑Keto Acids
Rebecca J. Rapf,†,§ Russell J. Perkins,†,⊥ Michael R. Dooley,†,∥ Jay A. Kroll,† Barry K. Carpenter,‡

and Veronica Vaida*,†

†Department of Chemistry and Biochemistry and Cooperative Institute for Research in Environmental Sciences, University of
Colorado Boulder, Boulder, Colorado 80309, United States
‡School of Chemistry and the Physical Organic Chemistry Centre, Cardiff University, Cardiff CF10 3AT, United Kingdom

*S Supporting Information

ABSTRACT: Sunlight can initiate photochemical reactions of organic
molecules though direct photolysis, photosensitization, and indirect processes,
often leading to complex radical chemistry that can increase molecular
complexity in the environment. α-Keto acids act as photoinitiators for organic
species that are not themselves photoactive. Here, we demonstrate this
capability through the reaction of two α-keto acids, pyruvic acid and 2-
oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for
five different cases that a cross-product between the photoinitiated α-keto acid
and non-photoactive species is formed during photolysis in aqueous solution.
Fatty acids and alcohols are relatively unreactive species, which suggests that α-
keto acids are able to act as radical initiators for many atmospherically relevant
molecules found in the sea surface microlayer and on atmospheric aerosol
particles.

■ INTRODUCTION

The Sun is by far the largest source of energy to the planet, and
it controls, directly or indirectly, the vast majority of physical,
chemical, and biological processes that take place on the
Earth.1−3 Atmospheric chemistry is driven by photochemical
processing, often from secondary reactions involving photo-
chemically generated radical species.4−6 Indeed, photochemis-
try in the literature has often been synonymous with photo-
oxidation by reactive oxygen species, including the predominant
hydroxyl radical (OH).7,8 Recently, however, there has been
increased interest in the direct photochemistry of organic
species, in both the gas and particle phase in the atmosphere, as
well as at the sea surface microlayer.4,9−18 These photoactive
organic species have also been shown to be capable of initiating
further reactions with species that are not themselves
photoactive.10,13,14,19−22 Such indirect photochemical processes
include either energy transfer from the initially excited molecule
to the excited state of another molecule (photosensitization),
or, as is studied here, the reaction of one photochemically
excited species with another, non-photoactive species (photo-
initiation).
Reaction with OH is often considered to be the controlling

factor governing the fate of species in the atmosphere because
of its ability to react indiscriminately with most species, even
those that are not particularly reactive.7 Photoexcited organic
species may act similarly,23 but such processes have been
subject to much less investigation in atmospheric chemis-
try.24,25 With notable exceptions,26,27 the contributions from
organic radical reactions have rarely been compared to those of

the ubiquitous OH radical reactions.26 It has been shown that,
in the aqueous phase, pyruvic acid is capable of initiating
polymerization of methyl vinyl ketone (MVK) that is
comparable to that from the corresponding reaction initiated
by OH.27 Both MVK and pyruvic acid are oxidation products of
isoprene.28−31 MVK is a highly reactive species that, upon
radical initiation, rapidly forms high molecular weight
products.19,27,29,32−44 Pyruvic acid, an α-keto acid whose
photochemistry has been studied extensively,9,16,45−56 reacts
in the aqueous phase to generate oligomeric species via radical
recombination.9,51−56 In this study, we show that α-keto acids
can act as radical initiators, not only for highly reactive species
like MVK, but also for relatively unreactive lipids, such as fatty
acids and fatty alcohols, leading to the generation of covalently
bonded molecules from the cross-reaction.
The reactions of these surface-active species are of particular

interest because of the ubiquity of fatty acids and fatty alcohols
in the sea surface microlayer18,57,58 as well as their ability to
partition and persist on atmospheric aerosol particles.58−62 The
chemistry of these simple lipids, especially the fatty acids, has
been studied to examine their volatile products, but
comparatively little attention has been paid to the condensed
phase products. The formation of higher molecular weight
products through photoinitiated processes, as shown here, has
the potential to modify the surfactant layer and contribute to
secondary organic aerosol formation. Beyond this, the cross-
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reactions between a photoinitiator species and non-photoactive
species that are discussed in this work show the disproportion-
ately large effect a species may have on the overall reactivity of a
mixture, even when the photoactive species is only a minor
component.

■ RESULTS AND DISCUSSION

The aqueous phase photochemistry of α-keto acids, including
pyruvic acid and OOA, has been studied in detail,9,51−56,63,64

allowing for mechanistic understanding of the available reactive
pathways52−54,65 and their dependence on reaction conditions,
such as solution pH56 and the presence of oxygen.54 The
photochemistry of these species is characterized largely by the
formation of radicals that recombine to form oligomeric
species, including covalently bonded dimers and trimers.66

Here, we examine the ability of these α-keto acids to initiate
reactions with the fatty acids and fatty alcohols, hexanoic acid,
nonanoic acid, 1-hexanol, and 1-nonanol, which themselves do
not absorb solar actinic radiation.
In addition to the mixed solutions of α-keto acids and fatty

acid or alcohol, control solutions consisting of the individual
fatty acids and alcohols were also photolyzed. While fatty acids
and fatty alcohols are not generally considered photoactive
species within the relevant actinic spectrum, it has recently been
suggested that some fatty acids, including nonanoic acid, may
undergo photochemistry themselves, perhaps due to an
enhancement of the triplet state at the air−water inter-
face.11,21,67 Our experimental conditions were chosen to

probe bulk phase photochemistry and, therefore, used relatively
dilute concentrations of all species. The concentrations used
here for the C9 species may prevent observation of minor
photochemical pathways. Under our experimental conditions,
the distilled fatty acids and fatty alcohols do not appear to
undergo photochemistry, with no changes observed in either
NMR or ESI− MS between the pre- and post-photolysis
solutions (Figures S1−S8, Tables S1−S5). We also note that
the higher concentration control of 100 mM nonanoic acid
dissolved in methanol shows no photochemical reactivity under
our experimental conditions (Figure S9).
Each of the fatty acids and fatty alcohols investigated has

weak absorbance in their respective UV−vis absorption spectra
at ∼270 nm (Figures S10 and S11), which is slightly decreased
in intensity following distillation (Figure S12). For nonanoic
acid, this peak has previously been assigned to its triplet
state.67,68 It is intriguing that the fatty alcohols also have a peak
in this same wavelength region given that their electronic
structures are quite different. Interestingly, upon photolysis of
20 mM hexanoic acid, while no new photoproducts are
detected by NMR or ESI− MS, the 270 nm peak in the UV−vis
absorption spectra is preferentially depleted compared to the
acid peak at ∼204 nm (Figure S13). Such behavior can be
explained if the observed 270 nm peak was due, at least in part,
to an impurity. Regardless, these experimental controls make it
clear that under our conditions, any observed photochemistry
for the fatty acids and fatty alcohols stems from the α-keto acids
acting as radical initiators.

Figure 1. Representative ESI− MS of a solution of 0.5 mM pyruvic acid and 0.8 mM nonanol after 5 h of photolysis highlighting the formation of the
mixed cross-product between the two species compared to major pyruvic acid photolysis products, dimethyl-tartaric acid (DMTA) and 2,4-
dihydroxy-2-methyl-5-oxohexanoic acid (DMOHA).52,53

Table 1. ESI− MS Data for the Cross-Product between α-Keto Acid Initiator and Fatty Acid or Fatty Alcohol Species

assigned formula [M − H]− theor. m/z exp. m/z mass diff. (ppm) pre-hνa post-hνa

pyruvic acid + hexanoic acid C9H15O5
− 203.0925 203.0926 0.5 Mb

pyruvic acid + hexanol C9H17O4
− 189.1132 189.1143 5.6 M

pyruvic acid + nonanoic acid C12H21O5
− 245.1394 245.1400 2.3 M

pyruvic acid + nonanol C12H23O4
− 231.1602 231.1607 2.2 M

OOA + nonanol C17H33O4
− 301.2384 301.2390 1.9 M

OOA + methanol C9H17O4
− 189.1132 189.1139 3.5 W S

aSignal intensities are given as weak (W), medium (M), or strong (S) as defined in the Supporting Information. Blank entries mean no signal was
observed above the threshold intensity. bThere is also weak overlapping photoproduct generated with the same chemical formula in the control
photolysis of pyruvic acid.
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As observed both by NMR and ESI− MS (Figure 1, Figures
S14−S23), the mixed solutions of fatty acids/alcohols with an
α-keto acid initiator are dominated by photoproducts generated
by radical recombination reactions between α-keto acid species
(Figures S24 and S25).53,65 Detailed ESI− MS results are given
in the Supporting Information (Tables S1−S5). It is not
surprising that reactions between photoactive species dominate
the observed results for these photolyses. However, new
photoproducts are observed for the mixed solutions that are not
present in either the α-keto acid or fatty acid/alcohol control
photolyses. Namely, as shown in Table 1, for each of the mixed
solutions under consideration here, a new analyte is observed
with an m/z corresponding to the molecular formula expected
for the cross-product between the α-keto acid and the fatty
acid/alcohol, evidence that organic radicals generated by
photolysis of α-keto acids can react with fatty acids and
alcohols. Figure 1 shows representative ESI− MS data for the
post-photolysis solution of 0.5 mM pyruvic acid and 0.8 mM
nonanol, showing both the expected products for the photolysis
of pyruvic acid, as well as the cross-product between pyruvic
acid and nonanol (theoretical m/z = 231.1602). Full spectra,
including pre-photolysis and methanol controls, are given for all
photolyses between α-keto acid and fatty acid/alcohol in
Figures S19−S23.
While not included in these results, we expect the cross-

product of OOA and nonanoic acid to also be formed.
However, the expected molecular formula from this product
matches that of one of the major photoproducts of OOA,
making its detection difficult. Similarly, there is a very minor
product generated by the photolysis of pyruvic acid with the
same chemical formula as the cross-product of pyruvic acid and
hexanoic acid. The intensity observed by ESI− MS is, however,
increased dramatically in the mixed photolysis case, suggesting
the new cross-product is, indeed, formed. It is unlikely that this
change is simply due to differences in ionization efficiency,
given the similar intensities observed for the other analytes
across solution conditions. The cross-products for pyruvic acid
with hexanol, nonanoic acid, and nonanol, as well as for OOA
with nonanol, are observed following photolysis without any
interference from photoproducts generated from the individual
α-keto acids.
We propose that this cross-product is formed by hydrogen

abstraction from the ground state fatty acid/alcohol by the
triplet state α-keto acid (T1), leading to radical formation. This
radical can then recombine with an α-keto acid radical in
solution, forming the cross-product. A proposed mechanism for
this process is shown for hexanoic acid and pyruvic acid in
Scheme 1. The favored site of hydrogen abstraction on
carboxylic acids is a matter of some debate in the
literature.69−73 We have drawn hydrogen abstraction as
occurring from the α-position of hexanoic acid, as is generally
assumed to be favored for longer-tailed carboxylic acids.69,71

There is sufficient energy for the α-keto acid triplet state to
induce hydrogen abstraction. Electronic structure calculations

suggest that this is, in fact, possible. CBS-QB3 calculations for
hydrogen abstraction from the α-position of propionic acid by
triplet state pyruvic acid show that because of the relatively
strong O−H bond that is formed after abstraction, this process
is exothermic by ∼17 kcal/mol. It is worth noting that the
calculation of the OH bond strength in this context requires
that the heat of formation of the radical be compared with that
of a hydrogen atom and pyruvic acid in its T1 state, not the
ground state as would be usual for a bond energy calculation.
The longer-tailed fatty acids ought to behave similarly to
propionic acid, and it is likely that hydrogen abstraction can
occur analogously for the fatty alcohols. While hydrogen
abstraction may be favored at the α-position, ESI− MS does not
give structural information. Therefore, it is possible that the
observed cross-products are due to a mix of constitutional
isomers resulting from hydrogen abstraction at other sites on
the molecule.
In principle, the radicals generated from hydrogen

abstraction from the fatty acid/alcohol could recombine with
each other to form the corresponding dimer product; however,
these products are not observed here by ESI− MS. This is likely
because under our experimental conditions it is more probable
that these radicals would first encounter a radical generated
from an α-keto acid species. Also, any such oligomeric products
may not be detected by ESI− MS, especially those derived from
the fatty alcohols, if they are not readily ionizable.
In addition to the solutions of α-keto acids and fatty acids

dissolved in water, 6 mM OOA was dissolved in methanol and
photolyzed at 4 °C. The photoproducts observed with the
highest intensity by ESI− MS are the same species generated
during the aqueous photolysis of OOA (Figure S26, Table S6).
However, there is also an observable analyte that corresponds
to the cross-product between OOA and methanol (exp. m/z =
189.1139). It is difficult to speculate on the relative ability of
OOA to abstract a hydrogen from methanol compared to the
other fatty alcohols under study here because the ratio of
methanol is much larger than the 2:1 used in the other cases.
However, the ability of OOA to cross-react with methanol is
intriguing. Methanol is generally thought of as quite inert, so
this observed cross-reaction is suggestive that the organic
intermediates generated by the photolysis of α-keto acids are
highly capable of hydrogen abstraction for many species
beyond those considered here.
The ability of a few photoactive molecules to induce further

reactions of non-photoactive species is of importance when
considering the chemistry of air−water interfaces, such as those
found on the SML or atmospheric aerosols. Lipids, such as
those under study here, partition preferentially to air−water
interfaces, and there is a considerable enrichment of organic
material at surfaces.74 Higher localized concentrations make it
more likely for an organic radical to encounter and react with
another species before being quenched, which may further
enhance the effect of a low concentration of photoinitiators.
Beyond favorable reaction conditions, the SML, aerosols, and

Scheme 1. Proposed Hydrogen Abstraction and Recombination Pathway to Form the Cross-Product between Hexanoic Acid
and Pyruvic Acid
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clouds provide a rich mixture of species for potential
reaction,17,58,75,76 expanding beyond simple single-molecule
systems. In this way, we are able to bring our fundamental
mechanistic understanding of a model chemical system to bear
on more complicated reactions in the natural environment.

■ CONCLUSIONS

Here, we have focused on the condensed phase products
generated by photoinitiated reactions between α-keto acids and
other, non-photoactive organic surface active species, driving
the abiotic increase in the molecular complexity of the system
through broadband irradiation by a solar simulator. We have
shown for five different cases that the cross-product between α-
keto acid initiator and non-photoactive species is formed
photochemically in aqueous solution. In addition, photolysis of
2-oxooctanoic acid dissolved in methanol is also observed to
form the corresponding cross-product. The higher molecular
weight products formed from photoinitiated processes are likely
to be more surface-active than the simple lipids used as starting
materials. This chemistry will further modify aqueous surfaces
and generates organic material that could contribute to the
formation of secondary organic aerosol. Direct photochemistry
of organic molecules, such as α-keto acids, appears to be readily
able to initiate reactions with even relatively unreactive species,
including methanol. The impact of such photoinitiation by
organic species on overall reactivity is not currently considered
in atmospheric chemical processing. The results presented here
suggest that under some conditions organic photochemistry
may be competitive with other reactive processes, including
reaction with hydroxyl radical. Further work is needed to better
quantify the role that organic radical reactions and photo-
initiated processes may play in the overall reactivity of organic
species in the atmosphere, especially with comparison to OH.

■ METHODS

Pyruvic acid (98%), hexanoic acid (>99.5%), 1-hexanol
(hexanol, 98%), nonanoic acid (96%), and 1-nonanol (nonanol,
98%) were obtained from Sigma-Aldrich and distilled by
heating under reduced pressure (<1 Torr) to remove
impurities. Pyruvic acid was distilled at <55 °C and used
within one month of distillation to ensure oligomers from dark
processes were minimized.77 Hexanol was heated to ∼50 °C,
hexanoic acid to ∼80 °C, and nonanoic acid and nonanol were
heated to ∼180 °C during distillation. In each case noticeable
yellow impurities were removed upon distillation, leaving a
clear, colorless liquid. Representative NMR spectra before and
after distillation are shown in Figures S27−S30. 2-Oxooctanoic
acid (OOA, ≥ 99.0%, Sigma-Aldrich) was used without further
purification.
Photolysis solutions were made in a ∼1:2 ratio of α-keto acid

initiator to fatty acid or alcohol, in the combinations reported in
Table 2. The ratio of α-keto acid initiator to nonanol was
slightly less than 1:2 because of solubility concerns. Control
solutions of 10 mM pyruvic acid, 0.5 mM OOA, 20 mM
hexanoic acid, 20 mM hexanol, 1 mM nonanoic acid, and 0.8
mM nonanol were also photolyzed, as were solutions of 6 mM
OOA and 100 mM nonanoic acid dissolved in methanol
(Fisher Scientific, 99.9%). Solutions were made using 18.2 MΩ
(3 ppb TOC) water and then sonicated until fully dissolved. All
solutions were used at the natural pH of the solution without
further adjustment.

Photolyses were conducted as described in Rapf et al. 2017.53

Briefly, for each experiment, 100 mL of solution were prepared
and ∼10 mL were saved as a pre-photolysis control. The
remaining solution was photolyzed for 5 h using an unfiltered
450 W Xe arc lamp (Newport). It has previously been shown
that photolysis with unfiltered light gives the same photo-
products as are observed when using a lamp equipped with a
Pyrex filter to cut out light of wavelengths <300 nm.54,67 Higher
concentration solutions were photolyzed in a temperature-
stabilized water bath at 4 °C, while the lower concentration
solutions were photolyzed at 20 °C due to solubility concerns
for nonanoic acid and nonanol. Comparison of hexanoic acid
photolyses at both temperatures showed no differences in
products with changing water bath temperature. All solutions
were purged with N2 beginning 1 h before the start of
photolysis and continuing throughout the experiment to
eliminate oxygen from the reactor. Oxygen-limited conditions
favor the formation of oligomeric products from the aqueous
photochemistry of α-keto acids,54 which allows for easier
identification and analysis of minor products, such as those
under study here. No unexpected or unusually high safety
hazards were encountered during the course of this study.
A variety of analytical techniques, including UV−vis and

NMR spectroscopy and high-resolution negative mode electro-
spray ionization mass spectrometry (ESI− MS), were used to
characterize solutions. Instrument parameters for these
techniques are given in the Supporting Information.
Analysis of mass spectrometry data followed the procedure

outlined in Rapf et al., 2017.53 Aqueous solutions were diluted
1:1 with methanol prior to injection in the instrument.
Photolysis samples that were conducted in methanol were
also diluted with additional methanol (1:1) prior to analysis. In
addition to the pre- and post-photolysis samples, methanol
blanks of pure methanol were obtained before injection of
samples and used to ensure the peaks observed were not due to
prior contamination or carry-over of material from previous
experiments. It is worth noting that ESI− MS experiments are
of limited use for identifying the fatty alcohols, hexanol and
nonanol, because they are not expected to deprotonate under
the ionization conditions used here. However, no differences
were observed in the MS for these control experiments upon
irradiation, and this was further confirmed by NMR spectra.
All ions assigned to a particular analyte were within at least

15 ppm of the theoretical mass for each experiment with typical
mass differences of <8 ppm. The experimental m/z and mass
differences reported in Table 1 and Tables S1−S6 are average
values combined across all experiments in which the analyte
was detected. The analyses conducted here were not designed
to be absolutely quantitative. Therefore, analyte intensities are
only used for relative comparison, as they may not correlate
directly with species concentration.

Table 2. Experimental Solution Compositions

α-keto acid conc.
(mM)

fatty acid/alcohol conc.
(mM)

pyruvic acid and hexanoic acid
(high)

10 20

pyruvic acid and hexanoic acid
(low)

0.5 1

pyruvic acid and hexanol 10 20
pyruvic acid and nonanoic acid 0.5 1
pyruvic acid and nonanol 0.5 0.8
OOA and nonanol 0.5 0.9
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In addition to the experimental studies, electronic structure
calculations for hydrogen abstraction from the α-position of
propionic acid by triplet state pyruvic acid were also conducted.
All calculations were performed with the Gaussian 09 suite of
programs78 and used the CBS-QB3 method of Petersson and
co-workers.79 The details of these calculations are provided in
Tables S7−S10.
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(17) Giorio, C.; Monod, A.; Breǵonzio-Rozier, L.; DeWitt, H. L.;
Cazaunau, M.; Temime-Roussel, B.; Gratien, A.; Michoud, V.; Pangui,
E.; Ravier, S.; et al. Cloud processing of secondary organic aerosol
from isoprene and methacrolein photooxidation. J. Phys. Chem. A
2017, 121, 7641−7654.
(18) Sabbaghzadeh, B.; Upstill-Goddard, R. C.; Beale, R.; Pereira, R.;
Nightingale, P. D. The atlantic ocean surface microlayer from 50°n to
50°s is ubiquitously enriched in surfactants at wind speeds up to 13
ms−1. Geophys. Res. Lett. 2017, 44, 2852−2858.
(19) Renard, P.; Siekmann, F.; Gandolfo, A.; Socorro, J.; Salque, G.;
Ravier, S.; Quivet, E.; Clement, J. L.; Traikia, M.; Delort, A. M.; et al.
Radical mechanisms of methyl vinyl ketone oligomerization through
aqueous phase OH-oxidation: On the paradoxical role of dissolved
molecular oxygen. Atmos. Chem. Phys. 2013, 13, 6473−6491.
(20) Tinel, L.; Rossignol, S.; Ciuraru, R.; Dumas, S.; George, C.
Photosensitized reactions initiated by 6-carboxypterin: Singlet and
triplet reactivity. Phys. Chem. Chem. Phys. 2016, 18, 17105−17115.
(21) Tinel, L.; Rossignol, S.; Bianco, A.; Passananti, M.; Perrier, S.;
Wang, X.; Brigante, M.; Donaldson, D. J.; George, C. Mechanistic
insights on the photosensitized chemistry of a fatty acid at the air/
water interface. Environ. Sci. Technol. 2016, 50, 11041−11048.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00124
ACS Cent. Sci. 2018, 4, 624−630

628

http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00124/suppl_file/oc8b00124_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acscentsci.8b00124
http://pubs.acs.org/doi/suppl/10.1021/acscentsci.8b00124/suppl_file/oc8b00124_si_001.pdf
mailto:Vaida@colorado.edu
http://orcid.org/0000-0003-4980-0060
http://orcid.org/0000-0001-5863-8056
http://dx.doi.org/10.1021/acscentsci.8b00124


(22) Malecha, K. T.; Nizkorodov, S. A. Feasibility of photosensitized
reactions with secondary organic aerosol particles in the presence of
volatile organic compounds. J. Phys. Chem. A 2017, 121, 4961−4967.
(23) Formosinho, S. J. Photochemical hydrogen abstractions as
radiationless transitions. Part 1: Ketones, aldehydes and acids. J. Chem.
Soc., Faraday Trans. 2 1976, 72, 1313−1331.
(24) Chen, H.; Ge, X.; Ye, Z. Aqueous-phase secondary organic
aerosol formation via reactions with organic triplet excited states: A
short review. Current Pollution Reports 2018, 4, 8−12.
(25) Silaev, M. Kinetics of nonbranched-chain processes of the free-
radical addition to molecules of alkenes, formaldehyde, and oxygen with
competing reactions of resulting 1:1 adduct radicals with saturated and
unsaturated components of the binary reaction system 2017, 4, 569−588.
(26) Epstein, S. A.; Nizkorodov, S. A. A comparison of the chemical
sinks of atmospheric organics in the gas and aqueous phase. Atmos.
Chem. Phys. 2012, 12, 8205−8222.
(27) Renard, P.; Reed Harris, A. E.; Rapf, R. J.; Ravier, S.; Demelas,
C.; Coulomb, B.; Quivet, E.; Vaida, V.; Monod, A. Aqueous phase
oligomerization of methyl vinyl ketone by atmospheric radical
reactions. J. Phys. Chem. C 2014, 118, 29421−29430.
(28) Lee, W.; Baasandorj, M.; Stevens, P. S.; Hites, R. A. Monitoring
OH-initiated oxidation kinetics of isoprene and its products using
online mass spectrometry. Environ. Sci. Technol. 2005, 39, 1030−1036.
(29) Altieri, K. E.; Carlton, A. G.; Lim, H.-J.; Turpin, B. J.; Seitzinger,
S. P. Evidence for oligomer formation in clouds: Reactions of isoprene
oxidation products. Environ. Sci. Technol. 2006, 40, 4956−4960.
(30) Ervens, B.; Carlton, A. G.; Turpin, B. J.; Altieri, K. E.;
Kreidenweis, S. M.; Feingold, G. Secondary organic aerosol yields from
cloud-processing of isoprene oxidation products. Geophys. Res. Lett.
2008, 35, L02816.
(31) Carlton, A. G.; Turpin, B. J.; Lim, H.-J.; Altieri, K. E.; Seitzinger,
S. Link between isoprene and secondary organic aerosol (SOA):
Pyruvic acid oxidation yields low volatility organic acids in clouds.
Geophys. Res. Lett. 2006, 33, L06822.
(32) Carlton, A. G.; Wiedinmyer, C.; Kroll, J. H. A review of
secondary organic aerosol (SOA) formation from isoprene. Atmos.
Chem. Phys. 2009, 9, 4987−5005.
(33) Ortiz-Montalvo, D. L.; Lim, Y. B.; Perri, M. J.; Seitzinger, S. P.;
Turpin, B. J. Volatility and yield of glycolaldehyde SOA formed
through aqueous photochemistry and droplet evaporation. Aerosol Sci.
Technol. 2012, 46, 1002−1014.
(34) Renard, P.; Siekmann, F.; Salque, G.; Demelas, C.; Coulomb, B.;
Vassalo, L.; Ravier, S.; Temime-Roussel, B.; Voisin, D.; Monod, A.
Aqueous-phase oligomerization of methyl vinyl ketone through
photooxidation: Part 1: Aging processes of oligomers. Atmos. Chem.
Phys. 2015, 15, 21−35.
(35) El Haddad, I.; Yao, L.; Nieto-Gligorovski, L.; Michaud, V.;
Temime-Roussel, B.; Quivet, E.; Marchand, N.; Sellegri, K.; Monod, A.
In-cloud processes of methacrolein under simulated conditions: Part 2:
Formation of secondary organic aerosol. Atmos. Chem. Phys. 2009, 9,
5107−5117.
(36) Altieri, K.; Seitzinger, S.; Carlton, A.; Turpin, B.; Klein, G.;
Marshall, A. Oligomers formed through in-cloud methylglyoxal
reactions: Chemical composition, properties, and mechanisms
investigated by ultra-high resolution FT-ICR mass spectrometry.
Atmos. Environ. 2008, 42, 1476−1490.
(37) Perri, M. J.; Seitzinger, S.; Turpin, B. J. Secondary organic
aerosol production from aqueous photooxidation of glycolaldehyde:
Laboratory experiments. Atmos. Environ. 2009, 43, 1487−1497.
(38) Tan, Y.; Carlton, A. G.; Seitzinger, S. P.; Turpin, B. J. SOA from
methylglyoxal in clouds and wet aerosols: Measurement and
prediction of key products. Atmos. Environ. 2010, 44, 5218−5226.
(39) Tan, Y.; Perri, M. J.; Seitzinger, S. P.; Turpin, B. J. Effects of
precursor concentration and acidic sulfate in aqueous glyoxal− OH
radical oxidation and implications for secondary organic aerosol.
Environ. Sci. Technol. 2009, 43, 8105−8112.
(40) Lim, Y. B.; Tan, Y.; Turpin, B. J. Chemical insights, explicit
chemistry, and yields of secondary organic aerosol from OH radical

oxidation of methylglyoxal and glyoxal in the aqueous phase. Atmos.
Chem. Phys. 2013, 13, 8651−8667.
(41) Donaldson, D.; Valsaraj, K. T. Adsorption and reaction of trace
gas-phase organic compounds on atmospheric water film surfaces: A
critical review. Environ. Sci. Technol. 2010, 44, 865−873.
(42) Zhang, X.; Chen, Z.; Zhao, Y. Laboratory simulation for the
aqueous OH-oxidation of methyl vinyl ketone and methacrolein:
Significance to the in-cloud SOA production. Atmos. Chem. Phys. 2010,
10, 9551−9561.
(43) Liu, Y.; Siekmann, F.; Renard, P.; El Zein, A.; Salque, G.; El
Haddad, I.; Temime-Roussel, B.; Voisin, D.; Thissen, R.; Monod, A.
Oligomer and SOA formation through aqueous phase photooxidation
of methacrolein and methyl vinyl ketone. Atmos. Environ. 2012, 49,
123−129.
(44) Chan, K. M.; Huang, D. D.; Li, Y. J.; Chan, M. N.; Seinfeld, J.
H.; Chan, C. K. Oligomeric products and formation mechanisms from
acid-catalyzed reactions of methyl vinyl ketone on acidic sulfate
particles. J. Atmos. Chem. 2013, 70, 1−18.
(45) Chang, X.-P.; Fang, Q.; Cui, G. Mechanistic photodecarbox-
ylation of pyruvic acid: Excited-state proton transfer and three-state
intersection. J. Chem. Phys. 2014, 141, 154311.
(46) Guzman, M. I.; Hoffmann, M. R.; Colussi, A. J. Photolysis of
pyruvic acid in ice: Possible relevance to CO and CO2 ice core record
anomalies. J. Geophys. Res. 2007, 112, D10123.
(47) Davidson, R. S.; Goodwin, D.; De Violet, P. F. The mechanism
of the photo-induced decarboxylation of pyruvic acid in solution.
Chem. Phys. Lett. 1981, 78, 471−474.
(48) Yamamoto, S.; Back, R. A. The photolysis and thermal
decomposition of pyruvic acid in the gas phase. Can. J. Chem. 1985, 63,
549−554.
(49) Vesley, G. F.; Leermakers, P. A. Photochemistry of alpha-keto
acids and alpha-keto esters 3. Photolysis of pyruvic acid in vapor phase.
J. Phys. Chem. 1964, 68, 2364−2366.
(50) Leermakers, P. A.; Vesley, G. F. Photolysis of pyruvic acid in
solution. J. Org. Chem. 1963, 28, 1160−1161.
(51) Guzman, M. I.; Colussi, A. J.; Hoffmann, M. R. Photoinduced
oligomerization of aqueous pyruvic acid. J. Phys. Chem. A 2006, 110,
3619−3626.
(52) Griffith, E. C.; Carpenter, B. K.; Shoemaker, R. K.; Vaida, V.
Photochemistry of aqueous pyruvic acid. Proc. Natl. Acad. Sci. U. S. A.
2013, 110, 11714−11719.
(53) Rapf, R. J.; Perkins, R. J.; Carpenter, B. K.; Vaida, V. Mechanistic
description of photochemical oligomer formation from aqueous
pyruvic acid. J. Phys. Chem. A 2017, 121, 4272−4282.
(54) Reed Harris, A. E.; Ervens, B.; Shoemaker, R. K.; Kroll, J. A.;
Rapf, R. J.; Griffith, E. C.; Monod, A.; Vaida, V. Photochemical kinetics
of pyruvic acid in aqueous solution. J. Phys. Chem. A 2014, 118, 8505−
8516.
(55) Eugene, A. J.; Guzman, M. I. Reactivity of ketyl and acetyl
radicals from direct solar actinic photolysis of aqueous pyruvic acid. J.
Phys. Chem. A 2017, 121, 2924−2935.
(56) Rapf, R. J.; Dooley, M. R.; Kappes, K.; Perkins, R. J.; Vaida, V.
pH dependence of the aqueous photochemistry of α-keto acids. J. Phys.
Chem. A 2017, 121, 8368−8379.
(57) Cochran, R. E.; Laskina, O.; Jayarathne, T.; Laskin, A.; Laskin, J.;
Lin, P.; Sultana, C.; Lee, C.; Moore, K. A.; Cappa, C. D.; Bertram, T.
H.; Prather, K. A.; Grassian, V. H.; Stone, E. A. Analysis of organic
anionic surfactants in fine and coarse fractions of freshly emitted sea
spray aerosol. Environ. Sci. Technol. 2016, 50, 2477−2486.
(58) Cochran, R. E.; Laskina, O.; Trueblood, J. V.; Estillore, A. D.;
Morris, H. S.; Jayarathne, T.; Sultana, C. M.; Lee, C.; Lin, P.; Laskin, J.;
et al. Molecular diversity of sea spray aerosol particles: Impact of ocean
biology on particle composition and hygroscopicity. Chem. 2017, 2,
655−667.
(59) Tervahattu, H.; Hartonen, K.; Kerminen, V. M.; Kupiainen, K.;
Aarnio, P.; Koskentalo, T.; Tuck, A. F.; Vaida, V. New evidence of an
organic layer on marine aerosols. J. Geophys. Res. 2002, 107, 4053−
4060.

ACS Central Science Research Article

DOI: 10.1021/acscentsci.8b00124
ACS Cent. Sci. 2018, 4, 624−630

629

http://dx.doi.org/10.1021/acscentsci.8b00124


(60) Tervahattu, H.; Juhanoja, J.; Vaida, V.; Tuck, A. F.; Niemi, J. V.;
Kupiainen, K.; Kulmala, M.; Vehkamaki, H. Fatty acids on continental
sulfate aerosol particles. J. Geophys. Res. 2005, 110, No. D06207.
(61) Gilman, J. B.; Eliason, T. L.; Fast, A.; Vaida, V. Selectivity and
stability of organic films at the air-aqueous interface. J. Colloid Interface
Sci. 2004, 280, 234−243.
(62) Gilman, J. B.; Tervahattu, H.; Vaida, V. Interfacial properties of
mixed films of long-chain organics at the air-water interface. Atmos.
Environ. 2006, 40, 6606−6614.
(63) Closs, G. L.; Miller, R. J. Photo-reduction and photo-
decarboxylation of pyruvic acid - applications of CIDNP to
mechanistic photochemistry. J. Am. Chem. Soc. 1978, 100, 3483−3494.
(64) Griffith, E. C.; Rapf, R. J.; Shoemaker, R. K.; Carpenter, B. K.;
Vaida, V. Photoinitiated synthesis of self-assembled vesicles. J. Am.
Chem. Soc. 2014, 136, 3784−3787.
(65) Rapf, R. J.; Perkins, R. J.; Yang, H.; Miyake, G. M.; Carpenter, B.
K.; Vaida, V. Photochemical synthesis of oligomeric amphiphiles from
alkyl oxoacids in aqueous environments. J. Am. Chem. Soc. 2017, 139,
6946−6959.
(66) If not specified, the terms “dimer” and “trimer” are used here to
refer to covalently bonded oligomeric species, rather than non-
covalently associated species.
(67) Rossignol, S.; Tinel, L.; Bianco, A.; Passananti, M.; Brigante, M.;
Donaldson, D. J.; George, C. Atmospheric photochemistry at a fatty
acid−coated air-water interface. Science 2016, 353, 699−702.
(68) Xiao, P.; Wang, Q.; Fang, W.-H.; Cui, G. Quantum chemical
investigation on photochemical reactions of nonanoic acids at air−
water interface. J. Phys. Chem. A 2017, 121, 4253−4262.
(69) Brocks, J. J.; Beckhaus, H.-D.; Beckwith, A. L.; Rüchardt, C.
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